Sonar: A Hardware Fuzzing Framework to Uncover Contention
Side Channels in Processors

Kanqi Zhang
State Key Laboratory of Cyberspace
Security Defense, IIE, CAS; UCAS
Beijing, China
zhangkanqi@iie.ac.cn

Xin Tian
State Key Laboratory of Cyberspace
Security Defense, IIE, CAS; UCAS
Beijing, China
tianxin@iie.ac.cn

Yongqiang Lyu
Tsinghua University
Beijing, China
luyq@tsinghua.edu.cn

Peinan Li*

State Key Laboratory of Cyberspace
Security Defense, IIE, CAS; UCAS
Beijing, China
lipeinan@iie.ac.cn

Zelong Du
State Key Laboratory of Cyberspace
Security Defense, IIE, CAS; UCAS
Beijing, China
duzelong@iie.ac.cn

Yu Jiang
Tsinghua university
Beijing, China
jy1989@mail.tsinghua.edu.cn

Rui Hou”

State Key Laboratory of Cyberspace
Security Defense, IIE, CAS; UCAS
Beijing, China
hourui@iie.ac.cn

Miao Li
State Key Laboratory of Cyberspace
Security Defense, IIE, CAS; UCAS
Beijing, China
limiao@iie.ac.cn

Quanchen Liu
State Key Laboratory of Cyberspace
Security Defense, IIE, CAS; UCAS
Beijing, China
liuquanchen@iie.ac.cn

Dan Meng
State Key Laboratory of Cyberspace
Security Defense, IIE, CAS; UCAS
Beijing, China
mengdan@iie.ac.cn

Abstract

Contention-based side channels, rooted in resource sharing, have
emerged as a significant security threat in modern processors. These
side channels allow attackers to leverage timing differences caused
by conflicts in execution ports, caches, or interconnects to infer
secret information such as cryptographic keys or enclave-resident
data. Despite increasing awareness, detecting such channels re-
mains challenging because triggering contentions requires precisely
orchestrating specific microarchitectural states, which is often dif-
ficult in practice, especially for timing-sensitive contentions.

This paper introduces Sonar, the first systematic and automated
fuzzing framework designed to uncover contention side channels
in processors. Our core idea is to leverage microarchitectural states
to guide testcase generation, enabling the precise triggering of mi-
croarchitectural events with stringent conditions. Sonar is built
on the key observation that multiplexers (MUXes) are hotspots for
contention, as resource contention frequently involves data rout-
ing and signal selection, which are fundamentally implemented

*Corresponding authors: Peinan Li and Rui Hou.
IIE, CAS: Institute of Information Engineering, Chinese Academy of Sciences.
UCAS: University of Chinese Academy of Sciences.

This work is licensed under a Creative Commons Attribution 4.0 International License.
MICRO °25, Seoul, Republic of Korea

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1573-0/25/10

https://doi.org/10.1145/3725843.3756136

by MUXes in circuits. We first identify contention-critical states
with side channel risks based on MUXes, and then utilize these
runtime states to directly guide testcase generation via fuzzing,
progressively approaching and ultimately triggering contentions.
Finally, we employ a dual-differential comparison method to effi-
ciently detect contention-induced side channels and simulate attack
scenarios to assess their exploitability.

Evaluated on two out-of-order RISC-V processors, Sonar uncov-
ers 14 contention side channels, including 11 previously unknown.
These results demonstrate the effectiveness of Sonar in uncovering
potentially exploitable microarchitectural contentions.

ACM Reference Format:

Kangi Zhang, Peinan Li, Miao Li, Xin Tian, Zelong Du, Quanchen Liu,
Yongqiang Lyu, Yu Jiang, Dan Meng, and Rui Hou. 2025. Sonar: A Hardware
Fuzzing Framework to Uncover Contention Side Channels in Processors.
In 58th IEEE/ACM International Symposium on Microarchitecture (MICRO
’25), October 18-22, 2025, Seoul, Republic of Korea. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3725843.3756136

1 Introduction

Recent studies have revealed significant risks associated with tim-
ing side channel attacks in processors. These side channels stem
from contention among different requests for the same resources
across users, such as execution ports and caches, enabling attack-
ers to observe and exploit timing differences to infer encryption
keys[1-4] and even extract private data from trusted execution
environments[5-7]. Furthermore, contentions arising from shared
components are widespread in processors, introducing security

https://orcid.org/0009-0006-8263-6329
https://orcid.org/0000-0001-5109-3495
https://orcid.org/0009-0002-5666-9793
https://orcid.org/0009-0008-0303-4069
https://orcid.org/0009-0001-6041-4120
https://orcid.org/0009-0004-2130-5628
https://orcid.org/0000-0003-2573-963X
https://orcid.org/0000-0003-0955-503X
https://orcid.org/0009-0002-9868-5353
https://orcid.org/0000-0002-9215-7632
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3725843.3756136
https://doi.org/10.1145/3725843.3756136

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

risks at various stages of the pipeline[1-4, 8-15]. Although post-
silicon defense strategies can mitigate timing side channels, they
are insufficient to fully eliminate vulnerabilities[16, 17], and tend
to incur substantial implementation complexity[18-20] and per-
formance overheads[21, 22]. Therefore, integrating vulnerability
detection into the pre-silicon phase presents a promising solution,
as it provides an opportunity to address vulnerabilities during chip
design and avoid costly post-silicon repairs.

However, current formal-based[23, 24] and fuzzing-based[25—
27] pre-silicon timing side channel detectors are insufficient for
targeting contention side channels. On one hand, they rely on ran-
dom instruction sequences as testcases, which makes it difficult to
trigger contention events at the microarchitectural level, especially
those with strict timing requirements. On the other hand, they lack
contention-related microarchitectural information as feedback, fail-
ing to perceive contention-triggering states, which hampers their
ability to accurately induce contention. Thus, developing a univer-
sal approach that can effectively detect contention side channels
remains demanding yet challenging.

Challenge 1: Identifying contention-critical states with
side-channel risks in large-scale processor designs. In modern
processors, frequent contention and the explosion of the microarchi-
tectural state space greatly complicate the analysis of contentions.
The primary challenge is to identify contention-critical microarchi-
tectural states and filter out those do not pose side-channel risks.

Challenge 2: Triggering contention and exposing observ-
able exploitable timing differences. Contention side channels
arise from triggering contentions, which result in observable tim-
ing differences. However, there exists a gap between random test-
case generation and the precise triggering of microarchitectural
contention events. So the key challenge is to bridge this gap by
effectively leveraging available contention states and maximizing
the observability of timing differences.

Challenge 3: Detecting contention side channels and evalu-
ating their exploitability. Contention side channels are identified
through timing differences under different secret values. However,
not all timing differences stem from contention, and the complexity
of processors makes distinguishing them challenging and time-
consuming. Therefore, rapid identification of contention side chan-
nels is critical. Additionally, assessing their exploitability presents
another challenge.

To address the above challenges, we employ fuzzing to itera-
tively guide the generation of testcases by contention-critical mi-
croarchitectural states, thereby approaching and triggering con-
tention to detect potential side channels. In this paper, we propose
Sonar, the first systematic and automated pre-silicon fuzzing
framework targeting contention side channels. We observe
that contentions in processors often involve operations such as
signal selection, data routing, and path switching, which are pre-
dominantly managed by multiplexers (MUXes). As a result, MUXes
are frequently the hot spot of resource contentions. Therefore, we
use MUXes as the basis for identifying contention points and con-
structing our fuzzing framework Sonar. In summary, this paper
makes the following contributions:

e Propose a method to identify and monitor contention-
critical microarchitectural states. We first locate potential

Zhang et al.

contention resources based on MUX, referred to as contention
points. All states at these points are considered contention-
critical. To this end, we propose a general bottom-up tracing
method to identify contention-critical states, including inputs
(i.e., requests), select signals, and outputs at contention points.
Additionally, we incorporate the timing interval between re-
quests (abbr. regsIntvl) as a type of contention state, as it is a
critical factor that indicates the triggering state of contention.
However, regsIntvl requires instrumentation for dynamic collec-
tion. To minimize instrumentation overhead, we filter out states
unrelated to inputs that cannot lead to side channels, ensuring
testing efficiency without compromising detection capability.
e Propose a contention-triggering mechanism guided by
microarchitectural states. To detect contention side chan-
nels, we design a testcase template with a specialized secret-
dependent region. By observing timing differences in other
instruction regions affected by contentions under different se-
cret values, we can infer the secrets. To bridge the gap between
random instruction sequences and the triggering of timing-
sensitive microarchitectural contentions, we utilize the inter-
request timing interval as feedback to guide testcase generation,
ultimately meeting the timing conditions. Specifically, we col-
lect runtime regsintvl associated with potential side-channel
risks and use it as a metric to retain and select testcases that
minimize reqsintvl during fuzzing, thereby progressively ap-
proaching the triggering of contentions. Moreover, to accelerate
the reduction and convergence of regsIntvl, we introduce an
adaptive directed mutation strategy.
e Design efficient contention side channel detection and
analysis method. We accurately identify side channels by an-
alyzing differences in the relative commit times of each instruc-
tion. Furthermore, we explore the root causes of these timing dif-
ferences related to contention by comparing contention-critical
states under different secret values. This dual-differential mech-
anism enables efficient detection of contention side channels.
Additionally, we simulate realistic attack scenarios and design
an attack template for evaluating the exploitability of detected
side channels.
Evaluate Sonar in open-source RISC-V processors. We eval-
uate Sonar on two open-source out-of-order RISC-V processors,
BOOM and NutShell, and successfully detect 14 contention side
channels, including 11 newly uncovered and 3 previously dis-
closed. We also assess the exploitability of these newly uncov-
ered side channels.

2 Background
2.1 Contention Side Channels

In modern processors, contention is a prevalent issue due to the
limited availability of resources, arising from conflicting access to
shared resources by multiple requests. These requests may origi-
nate from different cores[28] or the same core. Within the same
core, they can come from various threads (e.g., Intel’s Simultane-
ous Multithreading[29]) or even from the same thread[4, 30]. Con-
tention may affect the execution of the corresponding instructions
for requests, leading to either blocking or acceleration, ultimately

Sonar: A Hardware Fuzzing Framework to Uncover Contention Side Channels in Processors

exposing observable timing variations at the cycle-level. Attack-
ers can exploit these timing discrepancies to launch side channel
attacks, potentially compromising sensitive information.

Contention side channels can be categorized into two types
depending on their impact on microarchitectural states[31]. The
first category is volatile side channel, which contention induces
transient state changes and leaves no persistent microarchitectural
traces. For example, in the port contention scenario, multiple re-
quests might share execution ports, such as INT/FP ports. When
these ports become saturated, instruction dispatch is stalled and
instruction execution latency is elevated. Detecting such latency
potential indicates that port contention may have occurred. If the
victim’s port usage correlates with secrets, the attacker can de-
duce secret values via timing differences[2-4]. Components such
as cache bank[1, 14, 32], interconnect path[28], and MSHR[11]
are also vulnerable to such attacks. The second category is persis-
tent side channel, which contention leaves lasting footprints in the
microarchitecture. For instance, in the cache contention scenario,
incorrect speculative execution may alter the order of memory op-
erations, leading to persistent changes in cache state that can affect
the execution of other memory access instructions mapped to the
same cacheline. The attacker can measure their own cache access
latency and infer the victim’s memory access patterns based on
timing differences[12, 13, 33-36]. In addition to caches, other per-
sistent storage components, such as way predictor[37], TLB[15, 38],
PHT[9], and BTB[39, 40] also can be exploited.

These two types of contention side channels impose different tim-
ing requirements on requests. The root cause of volatile side chan-
nels is the limited bandwidth of shared resources, which typically
necessitates multiple requests contending for the same resource
simultaneously. This imposes strict timing constraints, making such
side channels difficult to be detected in practice. In contrast, to en-
sure that the subsequent requests are influenced by the persistent
traces left by the preceding request, persistent side channels require
requests to sequentially access the same microarchitectural storage
unit (e.g., a cacheline or TLB entry), thereby imposing constraints
on the data similarity between the requests. Current researches on
the detection of contention side channels primarily focus on persis-
tent side channels[41-43], lacking a systematic approach, especially
for volatile side channels with strict timing requirements.

2.2 Processor Fuzzing

s ADDr1.12,15| Mutator
BNE 1,0, P1 MUL 13, 18, 9
LB 13, 8(:1) SW 13, 8(1) @

Select Seed

!
Feedback @ Interesting | Save
|

Behaviors

ty

Figure 1: General workflow of processor fuzzing.

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

Recent studies have applied the fuzz testing technique from soft-
ware to processor verification[25-27, 44-54]. The five key phases
of fuzzing are illustrated in Figure 1. @Instrumentation: Monitor-
ing logic is embedded into the DUT (Design Under Test) to collect
runtime information (e.g., control register coverage[44]) during
test execution, providing feedback for testcase quality evaluation.
@Seed Generation: The fuzzer generates massive random testcases
as initial seeds for fuzzing during initialization, populating a seed
corpus. ®Seed Retention: High-quality testcases are dynamically
retained in the seed corpus for subsequent mutation. ®Seed Mu-
tation: As a key mechanism for testcase diversification, the fuzzer
mutates selected seeds from the corpus to generate new testcases.
®Vulnerability Detection: Vulnerabilities are detected through dif-
ferential analysis against reference models or expected outputs to
identify hardware behavioral deviations.

Current research on processor fuzzing primarily focuses on de-
tecting functional errors (e.g., Difuzzrtl[44], Cascade[47] and etc[45,
46, 48-53, 55-60]) and timing side channels (e.g., SIGFuzz[26],
WhisperFuzz[27], SpecDoctor[25]). Existing fuzzers generally em-
ploy randomized instruction sequences as testcases to reach novel
execution paths or microarchitectural states. However, when tar-
geting microarchitectural events, such as contention in this paper,
the role of randomized instruction sequences and uncontrolled mu-
tation is limited. Because these microarchitectural events typically
require specific microarchitectural states, such as strict timing re-
quirements of requests. Random instructions at the architectural
level often fail to accurately reach the required microarchitectural
level states, resulting in a gap. Therefore, it is essential to design
an effective mechanism to bridge this gap and detect side-channel
risks triggered by the target events.

3 Threat Model

This paper focuses on uncovering exploitable side channels in pro-
cessors caused by contention over shared resources. We assume
that attackers can construct volatile or persistent contention side
channels on various processor components. These channels can be
constructed within a single core or dual-core architectures and can
cross privilege levels or hardware threads. Additionally, attackers
are assumed to extract secret information by leveraging cycle-level
variations in instruction execution time. Sub-cycle level timing dif-
ferences within circuits, which are generally unobservable at the
architectural level, are beyond the scope of this work.

4 Design Overview

Contentions are prevalent in processors and may induce security
risks such as side channel vulnerabilities. Once a chip is fabricated,
patching such vulnerabilities becomes exceptionally challenging.
Consequently, it is critical to proactively detect contention side
channels during the register transfer level (RTL) design phase.

In this paper, we propose Sonar, the first systematic and au-
tomated pre-silicon fuzzing framework to detect contention side
channels in processors. Sonar can be divided into three main com-
ponents, as illustrated in Figure 2. First, we locate contention points
in processors based on MUXes, identify and monitor contention-
critical microarchitectural states at these points. To minimize in-
strumentation overhead and ensure testing efficiency, we filter out

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea Zhang et al.
Contention-Critical pArch States Contention-Critical pArch States-Guided Contention Side Channel
Identification and Filtering Contention Triggering Detection and Analysis
- T oSS IS A ¢ s - oo oo oo \ 2 S
1 Ed 1 1 Adaptive Directed Seed Mutation 1 1 1
£ sec=0 |]
1 £ 1 1 prommeammmmeca, 1 1 v v N
| = 1 | randon insts L% insts = 1
= 1 | commit log instruction
1 T 1 1 Ld x1, (secret) 1 1 commit critical ol 1
/ £ RTL cycle uarch ol
! /i E ! ! 1] 1 simolation dmeane| | otes 3
! 1 = eoutply ! ”“»I Proximity randon insts ! ! l s :
1 I 1 1 : : I | 3
______________________________ - -based 7] depend h time diff diff 3
1 Filtering 1 U g ection 1 T by 1
! \ ! (- Seed il 1 S|
| procesgor 1 ||||»I Recetion reduce? Contention Monitor | | 1 | iastiction) e QDo
R it
| \ | 1 regsintvl _Log. b . e warch Sl
. analysis . . C <y Contention Point: str P ms;lsl dfference e |
T Seed : reastntut: int ; 1 commit log :
1 (abbr reqsinil) 1 I {Corpus =i =" | Requesteair: reqs reqzn | |1 1 sec=1 |] 1
! filter if yes ! ! {(contention } analyze | cycte: int Vo 1 Side Channel Dual Differential !
1 1 \ | 1 Detector Comparisons I
N T _l ______ /e I T T I T T T, 7
instrument

> pArch Contention States Monitor
=

Figure 2: Design overview of Sonar.

states that do not pose side channel risks. Then, we design a special-
ized testcase template to support the detection of contention side
channels under both single-core and dual-core scenarios. During
the execution of testcases, we monitor and collect contention states
that are related to side channels as feedback to guide the triggering
of contention. Specifically, we gradually reduce the timing interval
between requests to trigger timing-sensitive volatile contentions.
We also propose an adaptive directed mutation strategy to further
accelerate the reduction of request intervals. In addition, while
monitoring timing conditions, we also increase the data similar-
ity between requests by mutation to facilitate the exploration of
persistent contention. Finally, to detect side channels caused by
triggered contentions, we exhaustively inspect potentially affected
instructions in the testcases and determine whether timing differ-
ences exist under different secret values. Upon observing timing
differences, we leverage our dual-differential comparison method
to pinpoint contention-related causes and uncover contention side
channels. Subsequently, we employ our designed Meltdown-like
attack templates to evaluate their exploitability.

5 Contention-Critical Microarchitectural States
Identification and Filtering

All microarchitectural states at contention points are considered
contention-critical. To find contention-critical microarchitectural
states, we design a general method to locate contention points and
recognize states on these points. These states will facilitate the
triggering of contentions during fuzzing. However, the numerous
identified states require extensive instrumentation for collection,
which can reduce testing efficiency. Note that some states are input-
independent and do not expose side-channel risks. Therefore, we
filter these states to ensure testing efficiency.

5.1 Contention States Identification via
Bottom-Up Tracing

Resource contentions often involve operations such as signal selec-

tion, data routing, and path switching. In circuits, although many

combinational logic structures can be used to implement these
operations, the fundamental implementation typically relies on

multiplexer (MUX) [61]. Therefore, we use MUX as the general
basis for locating contention points. MUX is a hardware element to
select one input from multiple inputs as the output, with the select
signal determining the source of the output. The simplest MUX is a
2:1 MUX (i.e., output = mux(sel, tval, fval)), which receives only two
inputs. When the select signal sel is 1, tval is selected as the output;
otherwise, fval is selected. When there are more than two inputs,
an n:1 MUX can be implemented by cascading multiple 2:1 MUXes.

Leveraging the cascading property of MUX, we design a bottom-
up tracing method starting from the output of an n:1 MUX to
identify all requests and select signals involved at the contention
point. Specifically, for each 2:1 MUX in the circuit, if its tval or fval
is connected to the output of another 2:1 MUX, continue recursive
tracing; otherwise, stop tracing. Through this method, an n:1 MUX
cascading tree can be constructed, and all leaf nodes in the tree
represent requests at the contention point. As illustrated in Figure
3, through bottom-up tracing, we start at the MUX output and
identify all requests and selection signals at the contention point
1dq_stq_idx.

(data ﬁ%requests

inpdts

0 fired_load 1

0 A 12558

_GEN_1078

_GEN_6347

L
bottom-up i
tracing Idq_stq_idx

Figure 3: An example of using the bottom-up tracing method
to identify all requests, select signals, and outputs at con-
tention points.

Sonar: A Hardware Fuzzing Framework to Uncover Contention Side Channels in Processors

At contention points, when multiple requests arrive simultane-
ously, the MUX prioritizes one request for processing while others
must wait, leading to processing delays that may create a volatile
side channel. In contrast, when requests arrive sequentially and
occupy the same request path, earlier requests may leave traces in
the data path that can be probed by subsequent requests, forming a
persistent side channel. In both scenarios, whether requests arrive
simultaneously or sequentially can be determined by observing
the cycle intervals between requests. As such, in addition to the
inherent inputs (i.e., requests), select signals, and outputs at contention
points, the timing intervals between requests (abbr. regsIntvl) are also
important contention-critical states.

To collect these contention-critical states, we can directly mon-
itor inherent circuit states such as requests, outputs, and select
signals. However, for regsIntvis that are not inherently present in
the circuit, instrumentation is required. Requests in the processor
typically consist of a data field and a validity field, and they are only
processed when the validity field indicates they are valid. Therefore,
the inserted code is used to dynamically record the timing intervals
between any two distinct valid requests, as well as the intervals
between two consecutive valid requests from the same source.

5.2 Filter Out Contention States Without
Side-Channel Risks

The goal of Sonar is to identify cases where different secret inputs
induce distinct microarchitectural states, enabling information leak-
age through timing differences. However, among the contention-
critical states identified via bottom-up tracing, some states are
independent of secrets. For example, a 2:1 MUX is used to select
one output from two constants according to the select signal. The
requests and regsIntvl at this contention point remain unchanged re-
gardless of the secrets, as the requests are constants and the validity
field of the constant is always considered valid. These contention-
critical states do not introduce timing differences, thereby posing
no risk of information leakage. Consequently, monitoring these
states is unnecessary, especially for the regsIntvl that requires in-
strumentation. Our experiments reveal that, on average, 31% of the
contention points identified through bottom-up tracing fall into
this category. Filtering out these constant states that pose no side-
channel risk is crucial for reducing instrumentation overhead and
ensuring testing efficiency.

If states are constant, they are not associated with side-channel
risks, and we filter out such states accordingly. It is straightforward
to distinguish whether requests, select signals and the outputs
are constants due to the fixed format of constants in the circuit.
However, determining whether regsintvl is constant through static
analysis is challenging, as it is a runtime-collected state. Fortunately,
we observe that when requests at a contention point are input-
dependent, they are typically marked by a valid signal. Building
on this observation, during bottom-up tracing, we check whether
each request has a valid signal. If no valid signals are present for
any request at a contention point, we consider the requests to be
valid during all clock cycles, and the regsIntvl is always a constant 0.
Dynamic monitoring of the regsIntvl at these points is meaningless.

To achieve this goal, we design the request validity determina-
tion algorithm, as delineated in Algorithm 1. According to circuit

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

programming specifications, the validity and data fields of a re-
quest typically share the same prefix, which indicates that they
belong to the same request. For example, in the ROB module of
BOOM [62], an instruction commit request includes a validity field
io_commit_valid and a data field io_commit_uops_inst. Both fields
share the same prefix io_commit. Therefore, pattern matching can
first be used to identify validity signals sharing the same prefix as
arequest’s data field (line 3 in Algorithm 1). If no match is found,
we trace back to the data field’s source signals, whose validity may
indirectly indicate the request’s validity. If validity fields for these
sources are found, the request’s validity is the bitwise AND of all
source validities (line 4-7 in Algorithm 1). If no validity field can
be determined by the above methods, the request is considered
constantly valid.

Algorithm 1: Request Validity Determination Logic

Input: D, data field of request.
Output: V), valid field of request.
1 function Main(D):
2 YV « null;
/* Look for a validity signal with the same prefix as D */
3 V « PrefixMatchedValid(D);
4 if V isnull then

5 Srcs < FindSrcs(D);

6 foreach src € Srcs do

7 V «— VAMain(src);
8 end

9 end
10 return V;

6 Microarchitectural States-Guided Contention
Triggering

In typical hardware fuzzers, potential bugs are often uncovered
through the generation of random instruction sequences. However,
many side channels originate from specific changes in microar-
chitectural states, which are difficult to induce accurately using
random instruction generation and mutation. Without monitor-
ing contention states, it is challenging to use a random method to
guide multiple requests to converge at a contention point, even
within the same cycle. Therefore, we propose a method to observe
microarchitectural states and leverage these states to guide testcase
generation, effectively triggering contention.

6.1 Testcase Template and Contention States
Monitoring

Sonar is designed to effectively identify contention side channels
that can leak secret information. This requires that the testcases
meet the following criteria: @ Induce microarchitectural contention
state variations under different secret values; @ Support for the
detection of volatile and persistent side channels in both single-
core and dual-core scenarios. To this end, we design a testcase
template as shown in Figure 4. For the single-core scenario, as il-
lustrated in Figure 4a, any instruction preceding or following the
secret-dependent instruction region may contend with the secret-
dependent instructions, potentially affecting their execution time.

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

For the dual-core scenario, as shown in Figure 4b, the victim exe-
cutes secret-dependent instructions on one core, while the attacker
on the other core frequently executes instructions that may con-
tend with the victim. Depending on the secret value, the presence
or absence of contention between the victim and attacker causes
variations in the attacker’s execution time. These timing differences
allow the attacker to infer the secret value.

random insts K-, core 0 core 1
1
lax, secret || | la x1, secret
secret Ibx2, (x1) ! Ib x2, (x1)

random
x2=0 | x2=1 F=) insts

dependent x2=0 | x2=1 -
regon || __v__ ¥ __

random insts K-

(a) Single Core (b) Dual-Core

Figure 4: The testcase template in Sonar. The regions indi-
cated by dashed arrow may exhibit observable timing differ-
ences due to contention.

It is worth noting that not all contentions have the potential
to leak sensitive information and pose a side-channel risk, and
only contention involving secret-dependent requests can. We refer
to such risky contention as secret-dependent contention, while the
opposite is secret-independent contention. For example, the con-
tentions occurring in the random instruction region of the template
shown in Figure 4 are unlikely to be exploited to infer secrets, as
these instructions are not directly related to the secret. Triggering
non-risky contention may block the possibility of reaching risky
secret-dependent contention at the same contention point, as the
process of approaching contention at that point almost halts once
contention occurs. Thus, only states associated with risky con-
tention are used to guide the generation of testcases. To accurately
monitor the states of secret-dependent contention during testcase
execution, we restrict the monitoring window to the clock cycles
during which secret-dependent instructions are in-flight, rather
than spanning the entire execution cycle of the testcase. In detail,
the monitoring window is defined as the clock period starting with
the first secret-dependent instruction entering the Reorder Buffer
(ROB) and ending with the last one being committed. Within this
window, in-flight secret-dependent instructions may induce con-
tentions. Outside this window, the probability of secret-dependent
contentions is low.

6.2 States-Guided Testcase Generation for
Triggering Contentions

The quality of the seed corpus directly impacts the depth, breadth,
and efficiency of fuzzing. Therefore, a significant challenge in
fuzzing is designing reasonable seed retention and selection strate-
gies to maintain the quality of the seed corpus. In addition, mutation
is an important method for generating diverse new testcases. Al-
though random mutation can explore more execution paths, it is
also likely to disrupt the critical structures in the testcases that may
affect contention points. Hence, more targeted mutation strategy
should also be developed to guide and approach contentions.

Zhang et al.

6.2.1 Gradual Approach to Trigger Volatile Contentions. Volatile
contentions require requests to contend for resources simultane-
ously, which makes it challenging to generate testcases that meet
such strict timing requirements through random generation. Sonar
addresses this challenge by employing a gradual approach strat-
egy to achieve the goal: @ Retain the testcase as a seed if it can
reduce the regsIntvl at any contention point; @ Prioritize seeds
with the smallest regsIntvl for mutation; @ Guide the mutation of
seeds based on the trend of decreasing regsIntvl until it reaches
zero, thereby triggering volatile contention.

Seed Retention and Selection: Within the monitoring window, we
collect the regsIntvl between any two valid requests at contention
points, which may originate from different levels of the MUX tree.
The minimum regsintvl among all request pairs serves as a mea-
sure of contention at a contention point and forms the basis for
seed retention and selection. If a testcase can reduce the minimum
regsIntvl at any contention point, we add it to the seed corpus. Dur-
ing seed selection, we prioritize seeds that are closer to triggering
contention. Specifically, contention points with smaller minimum
regsIntvl (but not zero) are more likely to be selected as targets
for further narrowing. Among the testcases that achieve the same
minimum regsIntvl at the target contention point, one is randomly
selected for mutation.

Interval-guided Directed Seed Mutation: To make the mutation
results more controllable and converging, we propose an adaptive
directed mutation strategy. This strategy leverages the effect of the
previous mutation to guide the next mutation direction, thereby
accelerating the reduction of regsintvl: if the previous mutation
reduces the minimum request interval, maintain the previous mu-
tation direction; otherwise, change the mutation direction. Mini-
mizing the regsIntvl essentially means that the cycles at which re-
quests are valid get closer. There are two key factors that influence
the validity of a request: the operand parsing time of instructions
and the availability of microarchitectural resources. Fortunately,
instruction-level mutations provide a direct and effective way to
control operand parsing time by adjusting the dependency chain
length, as this time is closely related to the chain length. By increas-
ing or decreasing the dependency chain length, we can regulate the
operand resolution time and, in turn, indirectly control the effective
timing of requests. We observe that inserting or removing instruc-
tions only at the head of the dependency chain has a monotonic and
uniform impact on the parsing time of all downstream instructions
in the chain: adding instructions at the head delays the parsing
time of downstream instructions, while removing them advances it.
This monotonicity and continuity provide a clear basis for mutation
directions. By determining whether the previous mutation reduced
the regsintvl, we can assess the effectiveness of the mutation direc-
tion and dynamically adjust it. This adaptive adjustment strategy
enables a faster reduction of the regsIntvl, allowing us to quickly
approach or trigger contention.

6.2.2 Enhance Data Similarity to Investigate Persistent Contentions.
Persistent contentions require at least two consecutive requests on
the same request path. This necessitates observing at least one valid
request within the monitoring window, ensuring that contention
involves secret-dependent instructions. The other valid request may
occur either within or outside the monitoring window. Besides,

Sonar: A Hardware Fuzzing Framework to Uncover Contention Side Channels in Processors

triggering persistent contentions imposes specific requirements
on the data fields of requests. Based on existing research, the data
fields typically need to be similar or identical to map to the same
storage unit. Therefore, in addition to the previously mentioned
directed mutation ensuring at least one request appears within the
monitoring window, we specifically adjust the operands of the same
type of instruction during instruction mutation to enhance the data
similarity between requests.

7 Contention Side Channels Detection and
Analysis

To detect contention side channels, merely triggering contention
is insufficient. Contentions that lead to side channels must exhibit
observable timing differences under different secret values, which
our detection mechanism relies upon. Therefore, we first identify
the timing differences induced by side channels. Then we automat-
ically locate the potential root causes of the contention that may
lead to these timing differences. After detecting contention side
channels, we design attack templates to analyze and explore their
exploitability.

7.1 Identification of Side Channels

To comprehensively detect side channels exposed by testcases, we
consider all regions potentially affected by contentions. These re-
gions include the instruction regions pointed to by the dashed
arrows in Figure 4, covering both single-core and dual-core scenar-
ios. Examining the execution time of the whole region may lead
to missed side channels due to the cancellation of timing effects.
To address this, we adopt a finer-grained, instruction-level detec-
tion method by analyzing the execution time of each instruction
under different secret values. We observe that requests affected
by contentions are directly reflected in the commit time of their
corresponding instructions. Thus, we detect side channels by com-
paring whether the commit times of the same instruction differ
under varying secret values.

However, detecting side channels solely by comparing instruc-
tion commit time differences is inaccurate. Instruction commit time
differences may result directly from side channels or indirectly from
delays in preceding instructions. For example, in the top table of
Figure 5, the commit times of the div and mul instructions differ
under different secret values. However, only the div instruction is
genuinely affected by the side channel, causing a 1-cycle delay when
the secret value is 1. The mul instruction itself is unaffected but is
delayed because it must wait for the div instruction to complete
commit, resulting in the same delay. In practice, if timing differences
are solely caused by the in-order commit mechanism, the relative
commit time differences between adjacent instructions remain un-
changed under different secret values. Based on this observation,
we propose the commit cycle difference (CCD) metric as an indi-
rect measure of instruction execution time. By comparing whether
the CCD changes with secret values, we can identify instructions
genuinely affected by side channels. This approach effectively fil-
ters out timing differences unrelated to side channels, preventing
wasted time and interference with the subsequent analysis.

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

pc |inst [commit cycle| commit cycle difference (CCD)
secret=01]... [addi| 0x6{71 0x6f71 - 0x0 = 0x6f71

... | div 0x6f78 0x6f78 - 0x6f71 = 0x7

. |mul| ox6f7d 0x6{7d - 0x6f78 = 0x6

mismatEI—> :=/

Differential Comparison

CCD_diff
pc |inst [commit cycle| commit cycle difference (CCD) report
secret =1} | ... |addi 0x6f71 0x6f71 - 0x0 = 0x6f71
... [div 0x6f79 0x6f79 - 0x6f71 = 0x8
.. [mul 0x6f7¢ 0x6f7e - 0x6f79 = 0x6
guide
side-channel
test case values of analysis
contention cycle when 8
point regsintvl| get regsintvl all select signals

when get regsintvl
secret = 0! r data_0 0 [0x66€9] [(1on]
io_iresp_inst| 0 [[0x8e67,0x8ecd]| [(1001), (1101)]

Differential Comparison misma@—>
contention_diff

o lues of
contention cycle when values | report
. regsintvl all select signals p
point get regsintvl when get regsintvl
secret =1 | data 0 0 [0x66€9] [(101)]
lio_iresp_inst| 0 [0x8e67] [(1001)]

Figure 5: Accurate contention side channel detection based
on dual-differential comparison.

7.2 Justification of Contention Side Channels

Even after identifying instructions genuinely affected by side chan-
nels, attributing timing differences to specific resource contentions
is still challenging and laborious. Because instructions often pass
through complex pipeline paths with multiple contention points,
exhaustive inspection is inefficient. The essence of contention side
channels is that different secrets trigger variations in microarchitec-
tural contention states, which have observable impacts on instruc-
tion execution. In other words, only contention points with state
differences under different secret values can lead to contention side
channels. Thus, we focus on discrepencies in contention states, as
shown in the table at the bottom of Figure 5. During testcase execu-
tion, we collect contention-critical microarchitectural states within
the monitoring window at each contention point and perform differ-
ential comparisons to identify state deviations, generating a report
that documents these discrepancies.

Ultimately, the CCD differential comparison pinpoints the timing
differences directly affected by side channels, while the differential
comparison of contention states records the specific contentions
likely responsible for those timing differences. Together, these two
reports enable rapid identification and justification of contention
side channels.

7.3 Exploitability Analysis

After detecting contention side channels, we further investigate
their exploitability. Based on the testcase template in Figure 4, we
extend it into a Meltdown-like [63] attack template, as shown in
Listing 1. At line 6, privileged secret data is accessed illegally, in-
ducing an access fault exception. However, due to lazy exception
handling, the processor continues to execute subsequent instruc-
tions. During this period, instructions related to the secret may

W o

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

cause contention with other instructions. Under different secret
values, the execution time may vary. By leveraging this character-
istic, attackers can infer secrets accordingly. For example, at line
6, access(secret_addr) reads kernel secret data bit by bit. If secret[i]
is 0, no contention occurs with the instruction at line 5; if secret[i]
is 1, contention occurs, resulting in longer execution time. Thus,
longer execution time is inferred as secret[i] = 1, while shorter time
is inferred as secret[i] = 0.

Listing 1: Meltdown-style attack template for contention side
channels exploitability analysis.

Zhang et al.

Table 1: Key parameters of BOOM and NutShell.

for (int i = @; i < secret_bits; i++) {
for (int t 0; t < train_times; t++) {

int t1 rdcycle();
operand = delay_inst();

instructions
affected_inst (operand)

// Delay execution of affected

access(secret_addr); | // access secret to trigger transient

execution
if (extract_bit(secret, i))
contentionPath(); // Encode '1'
else
no_contentionPath(); // Encode '0°'
int timediff = rdcycle() - t1;

via contention

}
Secret[i] = (timediff > threshold) ? 1 : 0;

Additionally, to increase the likelihood of resource contention
between the instructions at line 5 and line 6 within the transient
window, we insert a block of computation instructions at line 4
to delay the operand resolution time of the affected instructions.
Using this attack template, we can conduct a targeted analysis of
the identified contention side channels to assess their exploitability.

8 Evaluation

We implemented Sonar, which includes identification and monitor-
ing of contention-critical microarchitectural states, guided fuzzing
based on these states, and accurate side channel detection and
analysis. In this section, we present the evaluation of Sonar on
open-source RISC-V processors.

8.1 Evaluation Setup

Configuration of DUTs. We evaluate Sonar on two open-
source out-of-order RISC-V processors with varying complexity:
BOOM[62] and NutShell[64]. Table 1 summarizes their key con-
figuration parameters.

Fuzzing Environment: We compile BOOM and NutShell using
the open-source RTL simulator Verilator [65] and integrate BOOM
with memory systems and peripherals via Chipyard [66]. All evalu-
ation experiments are conducted on a machine equipped with an
Intel Xeon Platinum 8380 CPU running at 2.30 GHz, with 80 CPU
cores and 962 GiB of RAM.

8.2 Contention States Identification and
Filtering

We choose FIRRTL[67], a circuit intermediate representation, for
processor analysis. It serves as a transitional layer between the
high-level design in Chisel[68] and low-level implementation such
as Verilog, preserving rich structural details of the design. FIRRTL
enables implementation-independent analysis and circuit modifica-
tions that can be easily extended to other designs.

Feature BOOM NutShell
Supported ISA RV64GC RV64 IMAC/Zicsr/Zifencei
Privilege U/S/M U/S/M
Pipeline Stages 10 9
Fetch Width 8 2
Fetch Buffer 24 8
BrPred uBTB+BTB+TAGE BTB+PHT
Int/Fp PhyRegs 100/96 32/-
Mem/Fp/Int Func 1/1/3 1/-/2
ROB Entry 96 32
Ld/St Queue 24/24 -/8
I/DCache 32/32KB 32/32KB
L1 MSHR 2 -
L2 Cache 512 KB 128 KB
Bus Protocol TileLink SimpleBus+AXI4

N 2:1MUX-based locating Emm Bottom-up tracing-based locating after filtering

31484
BOOM

NutShell

0 5000 10000 15000 20000 25000 30000
The number of identified contention points

Figure 6: The number of identified contention points with
different strategies.

Identification and Distribution of Contention Points. MUXes
are hotspots for contention. However, simply treating every 2:1
MUX as a contention point would greatly overestimate the true
count, because many 2:1 MUXes only partially contribute to con-
tention. Our MUX-based bottom-up method can accurately iden-
tify true contention points, including those implemented through
cascaded MUXes. Compared to the 2:1 MUX-based method, our
MUX-based bottom-up tracing method significantly reduces the
number of identified points: from 31,484 to 8,975 (71.5% reduction)
on BOOM, from 23,618 to 4,631 (80.4% reduction) on NutShell, as
shown in Figure 6. The distribution and amount of identified con-
tention points are shown in Figure 7. We find that contention points
are mainly concentrated in the frontend, ROB, LSU, and peripheral
bus across these two processors.

Filtering States Without Side-Channel Risk: Figure 7 also
shows the number of dynamically monitored contention points for
the timing interval between requests after implementing the filter-
ing method described in §5.2. On BOOM, the number of contention
points is reduced from 8,975 to 6620 (26.2% reduction); on NutShell,
from 4,631 to 2976 (35.7% reduction).

8.3 Comprehensive Evaluation of Sonar

8.3.1 Overhead Analysis of Instrumentation. To collect run-
time contention states, we instrument the DUTs by adding monitor-
ing logic to the source code through custom transformation passes

Sonar: A Hardware Fuzzing Framework to Uncover Contention Side Channels in Processors

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

1750 Function Units
FrontEnd

B Execution
Load/Store Unit

B Periphery

EZZX Require dynamic monitoring of request timing intervals
1500

1250

1000

256
142 I uoli

1000

760
700

~
v
=)

o
=]
=]

367
311

The number of contention points
The number of contention points

N
&
o

126 85 1

177 141
29 66 68

61 82 68 77
0 @ 8 O
© S PR S g \““x\\c\‘ 60\/ c&o"o‘?o"o
é@"ga& & 6@6\ & &« \> & Q"o“ v c’o" ‘\‘v 0 \> e@“ ?’@q’ Q’ N
i
< Qe‘) W c° N qx"\‘\

(a) Contention points distribution in BOOM.

1750 Function Units
FrontEnd

I Execution
Load/Store Unit

W Periphery

EZZX Require dynamic monitoring of request timing intervals
1538

—
7
)
)

1250

1000

~
a
o

v
S
)

432

278
250 194 139 117 185
104 28 gy 60 42 95 64 63 145 13 108 190 43
ol BE o B 2 a0 B Y 28 2 4 28
PN VIR S S S SR T S SR NS R B R S
& & 5 & RN P\ & & W e o
) N <« [SIt Q\& o)

(b) Contention points distribution in NutShell.

Figure 7: Distribution and number of contention points in BOOM and NutShell: before vs. after filtering out states without

side-channel risk.

at the FIRRTL stage. As shown in Table 2, the instrumentation
introduces compilation overheads of 43% and 45% for BOOM and
NutShell, respectively, while causing simulation speed slowdowns
of 26% and 38%. The Verilog code sizes for BOOM and NutShell are
550k and 230k lines, with instrumentation accounting for 14% and
20% of the total code, respectively. Nevertheless, the overall fuzzing
speed remains acceptable. Notably, the instrumentation does not af-
fect the functional behavior of the DUTs, thus the execution results
of testcases are consistent before and after the instrumentation.

Table 2: Instrumentation overhead of Sonar. Numbers in
parentheses indicate the percentage overheads compared
to the original.

DUT Contention Compile #New Simulation Fuzzing
points time(s) verilog speed(Hz)" speed(/hour)
NutShell 4631 470(45%) 34k(20%) 28k(38%) 7596
BOOM 8975 314(43%) 67k(14%) 5.3k(26%) 239

*Simulation speed is measured as cycles per second.

8.3.2 Detection Capability Evaluation of Sonar. To evaluate
the vulnerability detection capability of Sonar, we conduct 3000
iterations of testing on BOOM and NutShell. We also compare
Sonaragainst random testing (i.e., Sonar without any guidance)
along two dimensions: cumulative contention coverage and the
number of timing differences that reflect secret values. The results
presented in Figure 8 convey the following information: @ A large
number of contentions are triggered in the early stage. Analysis
reveals that most are dominated by a single signal, meaning only
one request has a valid signal at these contention points. Moreover,
we also find that the valid signal also happens to be the request
itself, as illustrated in Figure 9. Since these valid signals are easily
asserted in the circuit, many contentions are triggered at the outset
of testing. @ New contentions tend to appear in clusters, as a single
contention event may involve multiple data selections and thus
map to several contention points. @ Sonar consistently outper-
forms random testing on both processors, with an average 117%
increase in triggered contention points and over 210% increase in
observed timing differences. @ Although thousands of contentions

are triggered, only 2.4%-7.2% result in observed timing differences.
This is because timing differences cannot be observed if contention
under different secret values affects instructions identically, or if
the affected instructions fall outside the observable region defined
by the template. As the number of iterations increases, the number
of timing differences continues to grow linearly, suggesting that
more risky contentions are likely to be uncovered in the future.

8.3.3 Breakdown Experiments. We conduct experiments to
evaluate the effectiveness of the proposed fuzzing strategies for
triggering contentions: (a) seed retention, (b) seed selection (which
inherently includes retention), and (c) seed mutation (which essen-
tially includes both retention and selection). As shown in Figure 10,
during the early stages of testing, the advantages of these strategies
are not pronounced. However, their benefits become evident as
testing progresses. The results show that our proposed directed
seed mutation strategy can effectively enhance the ability to trigger
contentions.

8.3.4 Comparison with SpecDoctor. We compare Sonar with
SpecDoctor[25], an open-source pre-silicon side channel fuzzer,
in terms of their ability to trigger contentions. As shown in Fig-
ure 11, under the same iterations, Sonar triggers 2.13x more new
contention points than SpecDoctor, showing stronger contention
triggering ability and greater potential for side channel discov-
ery. Moreover, SpecDoctor’s instrumentation has O(nz) time com-
plexity, where n is the number of FIRRTL statements in a module,
making it impractical for large-scale designs. While Sonar’s in-
strumentation runs in O(n) time, offering greater scalability for
complex designs.

8.3.5 Effectiveness of Dual Differential Comparison-Assisted
Side Channel Analysis. In practice, our dual differential compari-
son significantly speeds up the debugging of timing differences. For
example, when identifying execution port contention side channel
on BOOM, this method reduces debugging time from one hour
to just ten minutes, greatly enhancing contention side-channel
analysis efficiency.

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea Zhang et al.

—A— Contention-Random —— Timediff-Random —A— Contention-Sonar —— Timediff-Sonar

6000
25700 cov:B9% » 2640 cov:90%
S 22420
€ 5400 cov:84% =
g 92200 F
ESIOO cov:76% E -73%
S 819801 §cov:68% covi/3%h
° :72% °
§4soo cov:72% §1760 .
£ 150 2 507 COV:55%
by by
© 120)
8 28
€ 90 < 30
=] 3
S 60 S 20
(] (]
=l =l
F 30 F 10 f'—ﬁ

0 0

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Iteration Iteration
(a) BOOM. (b) NutShell.

Figure 8: Comparison of the number of triggered contentions and timing differences on BOOM and NutShell using Sonar and
random testing.

Table 3: List of contention-based side channels found by Sonar.

Shared
Processor Resf;lt.lerce # Description of Contention Side Channels New? | Time Difference | Accuracy
1 The younger ICache ‘read. instruction blocks the f)lder DCache read/writeback v 40 cycles 299%
instruction due to TileLink D-Channel contention.
Th I i ion blocks the older I]
sp | The you.nger Cache'reac.l instruction blocks t €0 der ICache read/writeback v 32-37 cycles 2997
instruction due to TileLink D-Channel contention.
5 Due to TileLink D-Channel contention, the younger DCache read instruction
TileLink" | 53 blocks the older ICache read/writeback instruction. v 1-38 cycles >99%
Due to TileLink D-Channel contention, the younger DCache read instruction
S4 ’ v 9 1 99%
blocks the older DCache read/writeback instruction. s z
MSHR S5 The younge}r load instruction occupies an MSHR and Plocks the older one v 40 cycles 299%
because their addresses have the same set index but different tags.
S6 When a younger and an older IOfid ir?str.u.ction access the read linebuffer v 9 cycles ~99%
X simultaneously, the younger one is prioritized, delaying the older one.
LineBuffer Wh dan older store instruct the write linebuff
n nger and an r store instruction rite lin T
7 en a younger and an older store instruction access the write linebuffe v 2-8 cycles 06%

simultaneously, the younger one is prioritized, delaying the older one.

When requests from alu, imul, and div simultaneously contend for the
BOOM EXE Unit | S8 | response port of the execution unit, the request from alu is prioritized, while X 1-11 cycles -
others are delayed.

The younger division instruction blocks the older one by entering the exe-

Div Unit S9 . .
cution unit first.

X 57-70 cycles -

The younger store conditional instruction writes data to cache and marks it
§10 | dirty regardless of success, delaying older instructions accessing the same X 12-31 cycles -
cacheline due to the required cache writeback.

The younger and older instructions access the same cacheline, with the
§11 | younger instruction executes first, causing the older instruction to hit in v 59 cycles >99%
the cache and thus be executed faster.

L1 DCache

The younger load instruction loads data into the cache and evicts a cacheline

$12 | that is needed by the older load instruction, causing the older instruction to v 18 cycles >94%
be delayed.
Multiplication and division instructions share the Multiply-Divide Unit
MDU $13 | (MDU), which is non-pipelined. When a younger multiplication instruction v 4-63 cycles <2%
Nutshell occupies the MDU, the older division instruction is blocked.

Contention on the shared read/write port of the L1 ICache can delay in-

L1ICache | S14 .
struction fetches.

v 8 cycles <2%

fSide channels due to contention on TileLink can also be observed in the dual-core scenario.

10

Sonar: A Hardware Fuzzing Framework to Uncover Contention Side Channels in Processors

@

<3

=)
@
=
S

Y
=3
1)

w a

S =}

S =)

I
=}
1)

N

S

)

~
o
1)
=
1
S

The number of triggered contentions
The number of triggered contentions

0
O R R R R LR RS SRR LR LR
AP PPN PPN 7 I I N T T T N PPN\
\\&Q@Q @ ﬁopb ROIRCRC &6\&6\\\& @x @0 @([& godb 4@4\ ﬁ({\bcf‘boﬁ
o 7 27 o 3707 27 Lo SN OV LT Q7 S R N O O o
oY e O RS O ST F T &
SO EeT 0T R el € R S S A N il
o & 0707, 070 P &l Kol & P
T VS BN &
& P o7 © 3 &
o5 & o7 > & &
¢ N K & &
Y YA
(a) BOOM. (b) NutShell.

Figure 9: Dominance of single valid signals in contentions
triggered by the first 20 testcases.

«» 5800
=4

—— Sonar-with seed retention
—— Sonar-with seed selection
—— Sonar-with seed mutation
—— Sonar-Random seeds

The number of trigged contentio
w w w w w 1% v
= N w B (% (=) ~
© © © © © © o
S & © © © & o

5000

0 500 1000 1500

Iteration

2000 2500 3000

Figure 10: Effectiveness of each strategy of triggering con-
tentions in Sonar on BOOM.

w
o
)

N
v
o

N
=]
o

—
%
o

-
o
o

w
o

—— Sonar
—— Specdoctor

o

The increment of trigged contentions

|
%
o

1000 1500

Iteration

0 500 2000 2500 3000

Figure 11: Comparison of Sonar and SpecDoctor in terms of
the number of newly triggered contentions on BOOM.

8.4 Side Channels Uncovered by Sonar

Sonardetected 12 contention side channels on BOOM and 2 on
NutShell, 11 of which are newly discovered. Table 3 provides a
brief description of these side channels and their resulting timing
differences in instruction execution. Based on the shared resources,
we categorize these side channels into 6 types. Next, we describe
these side channels in detail and highlight their novelty.

11

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

Boom Tile L2 Cache

req_0: from Icache Channel A

Mux(!busy, io.req, s1_reg)

L1
ICache

first request

Channel D

""""""""""" req_0 in pipeline,
pipeline busy

Chann=ll Channel D ESourceD

Blocking
L1

DCache req_1I : from Dcachel

ia]

Channel A second request Channel C

Figure 12: Mechanism of side channels S1-S4, which triggers
contentions on TileLink D-Channel.

A. TileLink Contention (S1-S4)

BOOM employs TileLink [69] as its on-chip interconnect proto-
col. Data transfers between the L1 and L2 caches are routed through
the D-Channel. A cache read request occupies the D-Channel for 8
cycles to return a cacheline of data, while a cache writeback request
takes only 1 cycle. As shown in Figure 12, a younger instruction’s
iCache read request req_0 blocks an older instruction’s DCache
writeback request req_1, delaying its response due to channel occu-
pancy (S1). A TileLink-based contention side channel arises when-
ever at least one of the requests is a cache read that occupies the
D-Channel for multiple cycles, blocking the other request. Cache
read requests may originate from either the L1 ICache or DCache.
Consequently, similar side channels are also observed in other in-
struction patterns, as described by S2-S4 in Table 3. In practice,
timing differences may be further amplified by subsequent instruc-
tions, often exceeding 8 cycles.

Unlike Intel’s On-chip InterConnect mechanism [70, 71], con-
tention in TileLink does not stem from complex multi-channel arbi-
tration or resources shared across cores. Instead, it can be triggered
by intra-thread timing conflicts within the instruction pipeline,
without relying on cross-core or LLC-slice sharing.

B. MSHR Contention (S5)

MSHRSs are used to track and manage outstanding cache miss
requests. There are two management modes in BOOM: pri, for
new requests or those unable to reuse existing MSHRs; and sec, for
requests that attempt to reuse an existing MSHR. Consider two
cache miss requests , req_0 and req_1, that share the same setidx
(the address field identifying a cache set) but differ in tag. The first
request req_0 occupies an MSHR for a cache miss. When req_1
arrives, MSHRs attempt to process it via the sec mode, as there is
an ongoing req_0 mapped to the same cache set. However, the tag
mismatch indicates they do not share the same cacheline, so reuse
fails. As aresult, req_1must wait until req_0 completes before being
accepted in pri mode, as depicted in Figure 13. According to our
observation, this delay can cause a stall of 40 cycles.

Unlike Speculative Interference Attacks[11], which attribute
blocking to the full MSHRs occupancy, we uncover a distinct case
in BOOM: requests can be blocked even when MSHRs are avail-
able, due to the setidx match but tag mismatch. We first identify
and characterize this scenario, and refer to it as false sharing path
blocking.

C. Read/Write LineBuffer Contention (S6-S7)

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

MSHRO !
(occupied) |
MSHRI |

(idle) E
DCache

’ L2 Cache ‘

Figure 13: Mechanism of triggering contention side channel
S5 on MSHR.

The LineBuffer is designed to minimize direct memory inter-
actions per access. In BOOM, the read and write LineBuffers are
used to temporarily hold data read from the L2 Cache and data
to be written back to the L2 Cache, respectively. However, when
two read/write requests are issued to the read/write LineBuffer
simultaneously (i.e., the same clock cycle), only one can be serviced
at a time, causing the other request to be stalled for one cycle. This
results in delayed instruction commit times.

Unlike RIDL[72], which exploits the property that a LineBuffer
entry may contain data from previous loads, our finding reveal that
the timing characteristics of simultaneous accesses to the read/write
LineBuffer can also lead to side-channel risks.

D. L1 DCache Contention (S10-S12)

Within a single hardware thread, two load instructions access the
same L1 DCache line, with the younger instruction executing first.
When the younger instruction encounters a cache miss, the older
instruction will benefit from the resolved miss and thus executes
faster. Without the younger instruction executing first, the older one
has to handle the cache miss by itself, resulting in longer execution
time (S11). Similarly, when the younger load instruction hits an L1
DCache miss while the DCache is full. A cacheline must be evicted
after fetching the data from memory. Unfortunately, the evicted
line is exactly the one the older load instruction needs, resulting in
an extra cache miss. The older load must spend more time handling
the cache miss (S12). Intuitively, S11 and S12 resemble attacks
such as Flush+Reload[34] and Prime+Probe[12]. The difference is
that S11 and S12 do not rely on multithreading. Sonar unveils that
cache-based side channel attacks can be carried out on a single
hardware thread.

In addition, Sonar also find the persistent side channel S10
caused by store conditional instructions mapped to the same cache-
line , which was first revealed by SIGFuzz [26].

E. L1 ICache Contention (S14)

During instruction fetch, the ICache in NutShell does not sup-
port simultaneous reads and writes. When read or write requests
contend for the ICache port, some requests are delayed, resulting
in timing differences in instruction execution. The measured delay
is approximately 8 cycles in our testing.

12

Zhang et al.

F. Execution Unit Contention (S8, S9, S13)

The Multiply-Divide Unit (MDU) in Nutshell is a non-pipelined
execution unit that handles both multiplication and division in-
structions. When a younger instruction occupies the MDU ahead
of an older one, the older instruction is forced to wait until the
MDU becomes available. This contention for the MDU causes de-
lays in committing the older instruction, forming the side channel
§13. Contention can occur between any multiplication or division
instructions. The observed delay ranges from 4 to 63 cycles, de-
pending on the execution times of various instructions.

Moreover, Sonar can also discover the execution unit writeback
port contention side channel S8 in BOOM in as little as 10 minutes,
which was first found by UPEC [23]. While Specdoctor [25] re-
vealed execution unit contention caused by division instructions in
NutShell, Sonar also can detect the same side channel S9 in BOOM.

8.5 Exploitation of Unveiled Contention Side
Channels

Based on the exploitation template in §7.3, we evaluate the exploita-
tion of new contention side channels listed in Table 3. On BOOM,
we successfully construct Meltdown-like exploitation PoC (proof-
of-concept) for S1-S7 and S11-S12. After executing each PoC 1,000
times, the results show that the inferred accuracy for a consecutive
128-bit key exceeds 99% in all cases. Notably, S7 achieves slightly
lower accuracy due to its observable timing difference being only
2-8 cycles, which is more susceptible to noise interference. Addi-
tionally, for S12, the random nature of cache eviction leads to a low
probability for triggering the contention scenario, resulting in a
lower success rate. We also try to construct PoC attacks for the two
side channels S13 and S14 on NutShell. However, the secret accu-
racy rate is below 2%. We attribute this mainly to NutShell’s earlier
exception detection in the pipeline, which causes exceptions to be
handled before the contention side channel is established. Nonethe-
less, we believe there remains potential for further exploitation and
plan to explore alternative attack methods beyond Meltdown to
disclose sensitive information in future work.

8.6 Mitigation Strategies

Both volatile and persistent side channel attacks rely on timing mea-
surements. Therefore, the most direct mitigation against contention-
based side channels is to restrict access to clock registers, prevent-
ing attackers from obtaining precise timing information and thus
reducing the accuracy of information leakage[73].

Many volatile side channel attacks rely on simultaneous mul-
tithreading (SMT); thus, disabling SMT can effectively mitigate
such attacks. Besides, SecSMT|[74] proposes partitioning pipeline
resources to eliminate resource contention between SMT threads. In
addition, obfuscated execution[75, 76], which increases execution
path uncertainty, can further reduce attack success rate.

For persistent side channel attacks, resource isolation is an ef-
fective mitigation strategy to block attack vectors. For example,
Catalyst[77] proposes cache isolation by allocating separate cache
resources to different applications, preventing information leakage
through shared components. Randomization techniques, such as

Sonar: A Hardware Fuzzing Framework to Uncover Contention Side Channels in Processors

random indexing[78, 79] and random padding[80], introduce un-
certainty in data placement and access patterns, making it harder
for attackers to infer sensitive information.

9 Related Work

In recent years, several fuzzing-based side channel detection works
have emerged at the pre-silicon stage. For example, SpecDoctor[25]
designs a multi-stage fuzzing template that detects timing side
channels in transient scenarios by analyzing execution time dif-
ferences after secret-dependent data transfers. WhisperFuzz[27]
integrates static analysis to detect and localize timing vulnerabil-
ities, and SIGFuzz[26] identifies side channels by monitoring the
impact of other instructions on commit timing. However, these ap-
proaches fundamentally rely on randomly generated and mutated
testcases, lacking feedback and guidance from contention-related
states, which makes it difficult to effectively trigger complex or
strict contentions. By comparison, Sonar automatically identifies,
collects, and leverages contention-critical microarchitectural states
to guide fuzzing, enabling targeted testcase mutation and more
effective triggering of contention.

Formal methods like UPEC[23] have also been designed to detect
side channels, but they require custom models, resulting in high
manual costs and limited scalability to large, complex designs. Due
to the linear complexity of the contention states identification,
Sonar can be applied to large-scale and complex designs, offering
end-to-end capability for discovering complex vulnerabilities.

Additionally, some works focus on post-silicon timing side chan-
nel discovery. Revizor[54] targets the L1 DCache by detecting infor-
mation leakage through checking consistency of hardware traces
under the same contract trace. Osiris[81] detects side channels
using a triple-instruction model. ABSynthe[82] proposes an au-
tomated method for contention side channels, but it is designed
for post-silicon stage and relies on real hardware. In comparison,
Sonar aims to uncover contention side channels caused by arbitrary
resources and instruction sequence lengths at pre-silicon stage, en-
abling earlier vulnerability detection and mitigation.

10 Conclusion

In this paper, we present Sonar, the first automated pre-silicon
fuzzing framework for detecting contention-based side channels in
processors. Sonar systematically identifies contention-critical mi-
croarchitectural states and leverages them to guide the generation
of testcases, efficiently triggering contention. This approach bridges
the gap between randomized testcases at the architectural level and
the precise triggering of microarchitectural events. Furthermore,
the proposed dual-differential comparison mechanism can facilitate
rapid identification of contention-based side channels. Evaluation
on two real-world RISC-V processors BOOM and NutShell reveals
14 contention side channels, 11 of which are previously unknown,
spanning multiple pipeline stages and components. We also fur-
ther analyze their exploitability using our designed Meltdown-style
attack template.

Acknowledgments

We sincerely appreciate the constructive feedback from the anony-
mous reviewers, which helped to further enhance the manuscript.

13

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

We are also grateful to all co-authors for their efforts and contri-
butions. Moreover, we would like to express our special thanks
to the XiangShan team for their valuable support of this work,
especially Prof. Yungang Bao and Miaomiao Yuan from the Insti-
tute of Computing Technology, Chinese Academy of Sciences (ICT,
CAS), and Prof. Dan Tang from the Beijing Institute of Open Source
Chip (BOSC). Besides, this work is supported by the Joint Funds
of the National Natural Science Foundation of China under Grant
No.U24A6009, the National Science Fund for Distinguished Young
Scholars under Grant No.62125208 and the Young Scientists Fund
of the National Natural Science Foundation of China under Grant
No.62202467.

References

[1] Yuval Yarom, Daniel Genkin, and Nadia Heninger. 2017. CacheBleed: a timing
attack on OpenSSL constant-time RSA. Journal of Cryptographic Engineering 7
(2017), 99-112.

[2] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner, Alessan-
dro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus. 2019. Smother-
spectre: exploiting speculative execution through port contention. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security.
785-800.

[3] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar Pereida
Garcia, and Nicola Tuveri. 2019. Port contention for fun and profit. In 2019 IEEE
Symposium on Security and Privacy (SP). IEEE, 870-887.

[4] Jacob Fustos, Michael Bechtel, and Heechul Yun. 2020. SpectreRewind: Leaking
secrets to past instructions. In Proceedings of the 4th ACM Workshop on Attacks
and Solutions in Hardware Security. 117-126.

[5] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Mar-
cus Peinado. 2017. Inferring Fine-grained Control Flow Inside SGX Enclaves
with Branch Shadowing. In 26th USENIX Security Symposium (USENIX Security
17). USENIX Association, Vancouver, BC, 557-574. https://www.usenix.org/
conference/usenixsecurity17/technical-sessions/presentation/lee- sangho

[6] Ferdinand Brasser, Urs Miiller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. 2017. Software Grand Exposure: SGX Cache
Attacks Are Practical. In 11th USENIX Workshop on Offensive Technologies (WOOT
17). USENIX Association, Vancouver, BC. https://www.usenix.org/conference/
woot17/workshop-program/presentation/brasser

[7] Tianlin Huo, Xiaoni Meng, Wenhao Wang, Chunliang Hao, Pei Zhao, Jian Zhai,
and Mingshu Li. 2019. Bluethunder: A 2-level Directional Predictor Based Side-
Channel Attack against SGX. IACR Transactions on Cryptographic Hardware and
Embedded Systems 2020, 1 (Nov. 2019), 321-347. https://doi.org/10.13154/tches.
v2020.i1.321-347

[8] Yun Chen, Lingfeng Pei, and Trevor E Carlson. 2023. AfterImage: Leaking control

flow data and tracking load operations via the hardware prefetcher. In Proceedings

of the 28th ACM International Conference on Architectural Support for Programming

Languages and Operating Systems, Volume 2. 16-32.

Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2015. Covert

channels through branch predictors: a feasibility study. In Proceedings of the

fourth workshop on hardware and architectural support for security and privacy.

1-8.

Stefan Gast, Jonas Juffinger, Martin Schwarzl, Gururaj Saileshwar, Andreas Kogler,

Simone Franza, Markus Kostl, and Daniel Gruss. 2023. Squip: Exploiting the

scheduler queue contention side channel. In 2023 IEEE Symposium on Security

and Privacy (SP). IEEE, 2256-2272.

Mohammad Behnia, Prateek Sahu, Riccardo Paccagnella, Jiyong Yu, Zirui Neil

Zhao, Xiang Zou, Thomas Unterluggauer, Josep Torrellas, Carlos Rozas, Adam

Morrison, et al. 2021. Speculative interference attacks: Breaking invisible spec-

ulation schemes. In Proceedings of the 26th ACM International Conference on

Architectural Support for Programming Languages and Operating Systems. 1046—

1060.

Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks and counter-

measures: the case of AES. In Topics in Cryptology—CT-RSA 2006: The Cryptogra-

phers’ Track at the RSA Conference 2006, San Jose, CA, USA, February 13-17, 2005.

Proceedings. Springer, 1-20.

Li-Chung Chiang and Shih-Wei Li. 2025. Reload+Reload: Exploiting Cache and

Memory Contention Side Channel on AMD SEV. In Proceedings of the 30th ACM

International Conference on Architectural Support for Programming Languages and

Operating Systems, Volume 2 (Rotterdam, Netherlands) (ASPLOS °25). Association

for Computing Machinery, New York, NY, USA, 1014-1027. https://doi.org/10.

1145/3676641.3716017

—
o)

[10

(1]

[12

[13

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-sangho
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-sangho
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://doi.org/10.13154/tches.v2020.i1.321-347
https://doi.org/10.13154/tches.v2020.i1.321-347
https://doi.org/10.1145/3676641.3716017
https://doi.org/10.1145/3676641.3716017

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

[14]

[15]

[16]

[17]

[18]

[19

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Ahmad Moghimi, Jan Wichelmann, Thomas Eisenbarth, and Berk Sunar. 2019.
Memjam: A false dependency attack against constant-time crypto implementa-
tions. International Journal of Parallel Programming 47 (2019), 538-570.

Ralf Hund, Carsten Willems, and Thorsten Holz. 2013. Practical timing side
channel attacks against kernel space ASLR. In 2013 IEEE Symposium on Security
and Privacy. IEEE, 191-205.

Thomas Bourgeat, Ilia Lebedev, Andrew Wright, Sizhuo Zhang, Arvind, and
Srinivas Devadas. 2019. MI6: Secure Enclaves in a Speculative Out-of-Order Pro-
cessor. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture (Columbus, OH, USA) (MICRO ’52). Association for Computing
Machinery, New York, NY, USA, 42-56. https://doi.org/10.1145/3352460.3358310
Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas Devadas, and
Joel Emer. 2018. DAWG: A defense against cache timing attacks in speculative
execution processors. In 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 974-987.

Sam Ainsworth and Timothy M. Jones. 2020. MuonTrap: preventing cross-domain
spectre-like attacks by capturing speculative state. In Proceedings of the ACM/IEEE
47th Annual International Symposium on Computer Architecture (Virtual Event)
(ISCA °20). IEEE Press, 132-144. https://doi.org/10.1109/ISCA45697.2020.00022
Khaled N. Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu Song, Dmitry
Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2019. SafeSpec: Ban-
ishing the Spectre of a Meltdown with Leakage-Free Speculation. In 2019 56th
ACM/IEEE Design Automation Conference (DAC). 1-6.

Sam Ainsworth. 2021. GhostMinion: A Strictness-Ordered Cache System for
Spectre Mitigation. In MICRO-54: 54th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (Virtual Event, Greece) (MICRO °21). Association for
Computing Machinery, New York, NY, USA, 592-606. https://doi.org/10.1145/
3466752.3480074

Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas, and
Christopher W. Fletcher. 2019. Speculative Taint Tracking (STT): A Compre-
hensive Protection for Speculatively Accessed Data. In Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture (Columbus, OH,
USA) (MICRO °52). Association for Computing Machinery, New York, NY, USA,
954-968. https://doi.org/10.1145/3352460.3358274

Kevin Loughlin, Ian Neal, Jiacheng Ma, Elisa Tsai, Ofir Weisse, Satish
Narayanasamy, and Baris Kasikci. 2021. {DOLMA }: Securing speculation with
the principle of transient {Non-Observability}. In 30th USENIX Security Sympo-
sium (USENIX Security 21). 1397-1414.

Mohammad Rahmani Fadiheh, Alex Wezel, Johannes Miiller, Jérg Bormann,
Sayak Ray, Jason M Fung, Subhasish Mitra, Dominik Stoffel, and Wolfgang Kunz.
2022. An exhaustive approach to detecting transient execution side channels in
RTL designs of processors. IEEE Trans. Comput. 72, 1 (2022), 222-235.
Mohammad Rahmani Fadiheh, Johannes Miiller, Raik Brinkmann, Subhasish
Mitra, Dominik Stoffel, and Wolfgang Kunz. 2020. A formal approach for detecting
vulnerabilities to transient execution attacks in out-of-order processors. In 2020
57th ACM/IEEE Design Automation Conference (DAC). IEEE, 1-6.

Jaewon Hur, Suhwan Song, Sunwoo Kim, and Byoungyoung Lee. 2022. Spec-
Doctor: Differential fuzz testing to find transient execution vulnerabilities. In
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security. 1473-1487.

Chathura Rajapaksha, Leila Delshadtehrani, Manuel Egele, and Ajay Joshi. 2023.
SIGFuzz: A framework for discovering microarchitectural timing side channels.
In 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 1-6.

Pallavi Borkar, Chen Chen, Mohamadreza Rostami, Nikhilesh Singh, Rahul Kande,
Ahmad-Reza Sadeghi, Chester Rebeiro, and Jeyavijayan Rajendran. 2024. Whis-
perfuzz: White-box fuzzing for detecting and locating timing vulnerabilities in
processors. arXiv preprint arXiv:2402.03704 (2024).

Riccardo Paccagnella, Licheng Luo, and Christopher W Fletcher. 2021. Lord of
the ring (s): Side channel attacks on the CPU On-Chip ring interconnect are
practical. In 30th USENIX Security Symposium (USENIX Security 21). 645-662.
Dean M Tullsen, Susan J Eggers, and Henry M Levy. 1995. Simultaneous mul-
tithreading: Maximizing on-chip parallelism. In Proceedings of the 22nd annual
international symposium on Computer architecture. 392-403.

Thomas Rokicki, Clémentine Maurice, and Michael Schwarz. 2022. CPU port con-
tention without SMT. In European Symposium on Research in Computer Security.
Springer, 209-228.

Jiliang Zhang, Congcong Chen, Jinhua Cui, and Keqin Li. 2024. Timing Side-
channel Attacks and Countermeasures in CPU Microarchitectures. ACM Comput.
Surv. 56, 7, Article 178 (April 2024), 40 pages. https://doi.org/10.1145/3645109
Zhen Hang Jiang and Yunsi Fei. 2017. A novel cache bank timing attack. In 2017
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE,
139-146.

Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.
Flush+Flush: A Fast and Stealthy Cache Attack. In Proceedings of the 13th Inter-
national Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment - Volume 9721 (San Sebastian, Spain) (DIMVA 2016). Springer-Verlag,
Berlin, Heidelberg, 279-299. https://doi.org/10.1007/978-3-319-40667-1_14

14

(34

[35

(36]

@
=

[38

[39

[40

N
fury

[42

[43

[44

[46

[47

(48]

N
X2

[50

[51

[52

[53

[54

(5]

Zhang et al.

Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: a high resolution, low
noise, L3 cache side-channel attack. In Proceedings of the 23rd USENIX Conference
on Security Symposium (San Diego, CA) (SEC’14). USENIX Association, USA,
719-732.

Samira Briongos, Pedro Malagon, José M Moya, and Thomas Eisenbarth. 2020.
{RELOAD+ REFRESH }: Abusing Cache Replacement Policies to Perform Stealthy
Cache Attacks. In 29th USENIX Security Symposium (USENIX Security 20). 1967—
1984.

Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede. 2021. Prime+ Scope:
Overcoming the observer effect for high-precision cache contention attacks. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security. 2906-2920.

Moritz Lipp, Vedad Hadzi¢, Michael Schwarz, Arthur Perais, Clémentine Maurice,
and Daniel Gruss. 2020. Take a way: Exploring the security implications of
AMD’s cache way predictors. In Proceedings of the 15th ACM Asia Conference on
Computer and Communications Security. 813-825.

Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2018. Translation
leak-aside buffer: Defeating cache side-channel protections with {TLB} attacks.
In 27th USENIX Security Symposium (USENIX Security 18). 955-972.

Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and Dmitry Pono-
marev. 2018. Branchscope: A new side-channel attack on directional branch
predictor. ACM SIGPLAN Notices 53, 2 (2018), 693-707.

Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2016. Jump
over ASLR: Attacking branch predictors to bypass ASLR. In 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 1-13.
Tianwei Zhang, Yingian Zhang, and Ruby B Lee. 2016. Cloudradar: A real-time
side-channel attack detection system in clouds. In International Symposium on
Research in Attacks, Intrusions, and Defenses. Springer, 118-140.

Austin Harris, Shijia Wei, Prateek Sahu, Pranav Kumar, Todd Austin, and Mo-
hit Tiwari. 2019. Cyclone: Detecting contention-based cache information leaks
through cyclic interference. In Proceedings of the 52nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture. 57-72.

Jinhua Cui, Yiyun Yin, Congcong Chen, and Jiliang Zhang. 2023. Spoiler-Alert:
Detecting Spoiler Attacks Using a Cuckoo Filter. In 2023 Design, Automation &
Test in Europe Conference & Exhibition (DATE). 1-6. https://doi.org/10.23919/
DATE56975.2023.10137180

Jaewon Hur, Suhwan Song, Dongup Kwon, Eunjin Baek, Jangwoo Kim, and
Byoungyoung Lee. 2021. Difuzzrtl: Differential fuzz testing to find cpu bugs. In
2021 IEEE Symposium on Security and Privacy (SP). IEEE, 1286-1303.

Rahul Kande, Addison Crump, Garrett Persyn, Patrick Jauernig, Ahmad-Reza
Sadeghi, Aakash Tyagi, and Jeyavijayan Rajendran. 2022. { TheHuzz }: Instruction
fuzzing of processors using {Golden-Reference} models for finding {Software-
Exploitable} vulnerabilities. In 31st USENIX Security Symposium (USENIX Security
22). 3219-3236.

Jinyan Xu, Yiyuan Liu, Sirui He, Haoran Lin, Yajin Zhou, and Cong Wang. 2023.
{MorFuzz}: Fuzzing processor via runtime instruction morphing enhanced syn-
chronizable co-simulation. In 32nd USENIX Security Symposium (USENIX Security
23). 1307-1324.

Flavien Solt, Katharina Ceesay-Seitz, and Kaveh Razavi. 2024. Cascade: CPU
fuzzing via intricate program generation. In Proc. 33rd USENIX Secur. Symp. 1-18.
Chen Chen, Rahul Kande, Nathan Nguyen, Flemming Andersen, Aakash Tyagi,
Ahmad-Reza Sadeghi, and Jeyavijayan Rajendran. 2023. {HyPFuzz}:{Formal-
Assisted} Processor Fuzzing. In 32nd USENIX Security Symposium (USENIX Secu-
rity 23). 1361-1378.

Fabian Thomas, Lorenz Hetterich, Ruiyi Zhang, Daniel Weber, Lukas Gerlach, and
Michael Schwarz. 2024. RISCVuzz: Discovering Architectural CPU Vulnerabilities
via Differential Hardware Fuzzing.

Kevin Laeufer, Jack Koenig, Donggyu Kim, Jonathan Bachrach, and Koushik
Sen. 2018. RFUZZ: Coverage-directed fuzz testing of RTL on FPGAs. In 2018
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE,
1-8.

Sujit Kumar Muduli, Gourav Takhar, and Pramod Subramanyan. 2020. Hy-
perfuzzing for soc security validation. In Proceedings of the 39th International
Conference on Computer-Aided Design. 1-9.

Sadullah Canakci, Leila Delshadtehrani, Furkan Eris, Michael Bedford Taylor,
Manuel Egele, and Ajay Joshi. 2021. Directfuzz: Automated test generation
for rtl designs using directed graybox fuzzing. In 2021 58th ACM/IEEE Design
Automation Conference (DAC). IEEE, 529-534.

Yuichi Sugiyama, Reoma Matsuo, and Ryota Shioya. 2023. SurgeFuzz: Surge-
Aware Directed Fuzzing for CPU Designs. In 2023 IEEE/ACM International Con-
ference on Computer Aided Design (ICCAD). IEEE, 1-9.

Oleksii Oleksenko, Christof Fetzer, Boris Képf, and Mark Silberstein. 2022. Re-
vizor: Testing black-box CPUs against speculation contracts. In Proceedings of
the 27th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems. 226—239.

Chen Chen, Vasudev Gohil, Rahul Kande, Ahmad-Reza Sadeghi, and Jeyavijayan
Rajendran. 2023. PSOFuzz: Fuzzing processors with particle swarm optimization.
In 2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD).

https://doi.org/10.1145/3352460.3358310
https://doi.org/10.1109/ISCA45697.2020.00022
https://doi.org/10.1145/3466752.3480074
https://doi.org/10.1145/3466752.3480074
https://doi.org/10.1145/3352460.3358274
https://doi.org/10.1145/3645109
https://doi.org/10.1007/978-3-319-40667-1_14
https://doi.org/10.23919/DATE56975.2023.10137180
https://doi.org/10.23919/DATE56975.2023.10137180

Sonar: A Hardware Fuzzing Framework to Uncover Contention Side Channels in Processors

[56]

[57]

[58]

[59

[60]

[61]

[62

[63]

[64]

[65

[66

[67

[69]

[70

[71]

[72]

[73]

[74

[75]

[76]

[77

Sy
&

[79]

[80

IEEE, 1-9.

Dian-Lun Lin, Yanqing Zhang, Haoxing Ren, Brucek Khailany, Shih-Hsin Wang,
and Tsung-Wei Huang. 2023. Genfuzz: Gpu-accelerated hardware fuzzing using
genetic algorithm with multiple inputs. In 2023 60th ACM/IEEE Design Automation
Conference (DAC). IEEE, 1-6.

Sadullah Canakei, Chathura Rajapaksha, Leila Delshadtehrani, Anoop Nataraja,
Michael Bedford Taylor, Manuel Egele, and Ajay Joshi. 2023. Processorfuzz:
Processor fuzzing with control and status registers guidance. In 2023 IEEE In-
ternational Symposium on Hardware Oriented Security and Trust (HOST). IEEE,
1-12.

Gen Zhang, Pengfei Wang, Tai Yue, Danjun Liu, Yubei Guo, and Kai Lu. 2024.
INSTILLER: Towards Efficient and Realistic RTL Fuzzing. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (2024).

Timothy Trippel, Kang G Shin, Alex Chernyakhovsky, Garret Kelly, Dominic
Rizzo, and Matthew Hicks. 2022. Fuzzing hardware like software. In 31st USENIX
Security Symposium (USENIX Security 22). 3237-3254.

Vasudev Gohil, Rahul Kande, Chen Chen, Ahmad-Reza Sadeghi, and Jeyavijayan
Rajendran. 2024. Mabfuzz: Multi-armed bandit algorithms for fuzzing processors.
In 2024 Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 1-6.

Sarah Harris and David Harris. 2021. Digital Design and Computer Architecture,
RISC-V Edition. Morgan Kaufmann.

Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic. 2020. Sonic-
boom: The 3rd generation berkeley out-of-order machine. In Fourth Workshop on
Computer Architecture Research with RISC-V, Vol. 5. 1-7.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, Mike
Hamburg, and Raoul Strackx. 2020. Meltdown: reading kernel memory from user
space. Commun. ACM 63, 6 (May 2020), 46-56. https://doi.org/10.1145/3357033
OSCPU. 2024. NutShell. https://github.com/OSCPU/NutShell. Accessed: Novem-
ber 19, 2024.

Stephen Wilson. 2024. Verilator: Open-source SystemVerilog simulator. https:
//github.com/verilator/verilator. Accessed: 2024-11-16.

UC Berkeley Architecture Research Group. 2024. Chipyard: Integrated De-
sign, Simulation, and Implementation Framework. https://github.com/ucb-
bar/chipyard. Accessed: 2024-11-16.

Chips Alliance. 2024. FIRRTL: Flexible Intermediate Representation for RTL.
https://github.com/chipsalliance/firrtl. Accessed: 2024-10-17.

Chisel Developers. 2024. Chisel: Constructing Hardware in a Scala Embedded
Language. https://www.chisel-lang.org/. Accessed: 2024-10-17.

SiFive. 2021. TileLink Specification. https://starfivetech.com/uploads/tilelink _
spec_1.8.1.pdf Version 1.8.1.

Riccardo Paccagnella, Licheng Luo, and Christopher W Fletcher. 2021. Lord of
the ring (s): Side channel attacks on the {CPU} {On-Chip} ring interconnect are
practical. In 30th USENIX Security Symposium (USENIX Security 21). 645-662.
Miles Dai, Riccardo Paccagnella, Miguel Gomez-Garcia, John McCalpin, and
Mengjia Yan. 2022. Don’t mesh around:{Side-Channel} attacks and mitigations
on mesh interconnects. In 31st USENIX Security Symposium (USENIX Security 22).
2857-2874.

Stephan van Schaik, Alyssa Milburn, Sebastian Osterlund, Pietro Frigo, Giorgi
Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2019. RIDL:
Rogue In-Flight Data Load. In 2019 IEEE Symposium on Security and Privacy (SP).
88-105. https://doi.org/10.1109/SP.2019.00087

Robert Martin, John Demme, and Simha Sethumadhavan. 2012. Timewarp:
Rethinking timekeeping and performance monitoring mechanisms to mitigate
side-channel attacks. ACM SIGARCH computer architecture news 40, 3 (2012),
118-129.

Mohammadkazem Taram, Xida Ren, Ashish Venkat, and Dean Tullsen. 2022.
{SecSMT}: Securing {SMT} processors against {Contention-Based} covert
channels. In 31st USENIX Security Symposium (USENIX Security 22). 3165-3182.
Ashay Rane, Calvin Lin, and Mohit Tiwari. 2015. Raccoon: Closing digital {Side-
Channels} through obfuscated execution. In 24th USENIX Security Symposium
(USENIX Security 15). 431-446.

Jan Wichelmann, Anja Rabich, Anna Pétschke, and Thomas Eisenbarth. 2024.
Obelix: Mitigating side-channels through dynamic obfuscation. In 2024 IEEE
Symposium on Security and Privacy (SP). IEEE, 4182-4199.

Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot Heiser,
and Ruby B Lee. 2016. Catalyst: Defeating last-level cache side channel attacks
in cloud computing. In 2016 IEEE international symposium on high performance
computer architecture (HPCA). IEEE, 406-418.

Moinuddin K Qureshi. 2018. CEASER: Mitigating conflict-based cache attacks via
encrypted-address and remapping. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 775-787.

Moinuddin K Qureshi. 2019. New attacks and defense for encrypted-address cache.
In Proceedings of the 46th International Symposium on Computer Architecture. 360—
371.

Fangfei Liu and Ruby B Lee. 2014. Random fill cache architecture. In 2014 47th
Annual IEEE/ACM International Symposium on Microarchitecture. IEEE, 203-215.

15

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

[81] Daniel Weber, Ahmad Ibrahim, Hamed Nemati, Michael Schwarz, and Christian

Rossow. 2021. Osiris: Automated discovery of microarchitectural side channels.
In 30th USENIX Security Symposium (USENIX Security 21). 1415-1432.

[82] Ben Gras, Cristiano Giuffrida, Michael Kurth, Herbert Bos, and Kaveh Razavi.

2020. ABSynthe: Automatic Blackbox Side-channel Synthesis on Commodity
Microarchitectures.. In NDSS.

https://doi.org/10.1145/3357033
https://github.com/OSCPU/NutShell
https://github.com/verilator/verilator
https://github.com/verilator/verilator
https://github.com/ucb-bar/chipyard
https://github.com/ucb-bar/chipyard
https://github.com/chipsalliance/firrtl
https://www.chisel-lang.org/
https://starfivetech.com/uploads/tilelink_spec_1.8.1.pdf
https://starfivetech.com/uploads/tilelink_spec_1.8.1.pdf
https://doi.org/10.1109/SP.2019.00087

	Abstract
	1 Introduction
	2 Background
	2.1 Contention Side Channels
	2.2 Processor Fuzzing

	3 Threat Model
	4 Design Overview
	5 Contention-Critical Microarchitectural States Identification and Filtering
	5.1 Contention States Identification via Bottom-Up Tracing
	5.2 Filter Out Contention States Without Side-Channel Risks

	6 Microarchitectural States-Guided Contention Triggering
	6.1 Testcase Template and Contention States Monitoring
	6.2 States-Guided Testcase Generation for Triggering Contentions

	7 Contention Side Channels Detection and Analysis
	7.1 Identification of Side Channels
	7.2 Justification of Contention Side Channels
	7.3 Exploitability Analysis

	8 Evaluation
	8.1 Evaluation Setup
	8.2 Contention States Identification and Filtering
	8.3 Comprehensive Evaluation of Sonar
	8.4 Side Channels Uncovered by Sonar
	8.5 Exploitation of Unveiled Contention Side Channels
	8.6 Mitigation Strategies

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

